Радиус вписанной окружности правильного треугольника, формула

Радиус вписанной окружности правильного треугольника Радиус вписанной окружности правильного треугольника вычисляется по классической формуле

\[r = \sqrt[-1.1]{\frac{(p-a)(p-a)(p-a)}{p}}\]

где

\[p=\frac{1}{2} (a+a+a)\]
(a - сторона правильного треугольника;
r - радиус вписанной окружности правильного треугольника)

После подстановок, преобразований и упрощений получается следующая формула:

\[r = \frac{a}{2\sqrt{3}}\]

Вычислить, найти радиус вписанной окружности правильного треугольника по формуле (3)

нажмите кнопку для расчета

Радиус вписанной окружности правильного треугольника

стр. 242