Гравитационное поле, поле тяготения

Каждое тело (например, Земля) создает вокруг себя силовое поле — поле тяготения. Напряженность этого поля в любой его точке характеризует силу, которая действует на находящееся в этой точке другое тело.

Если:
g — напряженность гравитационного поля,
F — гравитационная сила действующая на тело массой m,
m — масса тела в гравитационном поле,
то

\[ \vect{g} = \frac{ \vect{F} }{m} \]

Напряженность поля g представляет собой векторную величину, направление которой определяется направлением гравитационной силы F, а численное значение — формулой ускорения свободного падения.

Напряженность гравитационного поля совпадает по величине, направлению и единицам измерения с ускорением свободного падения, хотя по своему физическому смыслу, это совершенно разные физические величины. В то время, как напряженность поля характеризует состояние пространства в данной точке, сила и ускорение появляются только тогда, когда в данной точке находится пробное тело.

Гравитационное поле, поле тяготения

Из графика функции g=g(r) наглядно видно, что напряженность гравитационного поля g стремится к нулю, когда расстояние r стремится к бесконечности. Поэтому утверждения типа «спутник покинул гравитационное поле Земли» неверны.

Гравитационные поля небесных тел перекрываются. Если двигаться вдоль прямой, соединяющей центры Земли и Луны, то, начиная с определенного места, будет преобладать напряженность гравитационного поля Луны.

Гравитационное поле (поле тяготения)

стр. 415